首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   25篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   3篇
  2015年   12篇
  2014年   17篇
  2013年   16篇
  2012年   28篇
  2011年   40篇
  2010年   17篇
  2009年   25篇
  2008年   32篇
  2007年   10篇
  2006年   10篇
  2005年   8篇
  2004年   12篇
  2003年   11篇
  2002年   13篇
  2001年   14篇
  2000年   15篇
  1999年   18篇
  1998年   10篇
  1997年   3篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   8篇
  1992年   12篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1976年   2篇
  1974年   6篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
  1954年   2篇
  1949年   1篇
排序方式: 共有444条查询结果,搜索用时 15 毫秒
31.
Chronic wound infections are typically polymicrobial; however, most in vivo studies have focused on monospecies infections. This project was designed to develop an in vivo, polymicrobial, biofilm-related, infected wound model in order to study multispecies biofilm dynamics and in relation to wound chronicity. Multispecies biofilms consisting of both Gram negative and Gram positive strains, as well as aerobes and anaerobes, were grown in vitro and then transplanted onto the wounds of mice. These in vitro-to-in vivo multi-species biofilm transplants generated polymicrobial wound infections, which remained heterogeneous with four bacterial species throughout the experiment. We observed that wounded mice given multispecies biofilm infections displayed a wound healing impairment over mice infected with a single-species of bacteria. In addition, the bacteria in the polymicrobial wound infections displayed increased antimicrobial tolerance in comparison to those in single species infections. These data suggest that synergistic interactions between different bacterial species in wounds may contribute to healing delays and/or antibiotic tolerance.  相似文献   
32.
33.
Pyrosequencing of 16S rRNA genes allows for in-depth characterization of complex microbial communities. Although it is known that primer selection can influence the profile of a community generated by sequencing, the extent and severity of this bias on deep-sequencing methodologies is not well elucidated. We tested the hypothesis that the hypervariable region targeted for sequencing and primer degeneracy play important roles in influencing the composition of 16S pyrotag communities. Subgingival plaque from deep sites of current smokers with chronic periodontitis was analyzed using Sanger sequencing and pyrosequencing using 4 primer pairs. Greater numbers of species were detected by pyrosequencing than by Sanger sequencing. Rare taxa constituted nearly 6% of each pyrotag community and less than 1% of the Sanger sequencing community. However, the different target regions selected for pyrosequencing did not demonstrate a significant difference in the number of rare and abundant taxa detected. The genera Prevotella, Fusobacterium, Streptococcus, Granulicatella, Bacteroides, Porphyromonas and Treponema were abundant when the V1-V3 region was targeted, while Streptococcus, Treponema, Prevotella, Eubacterium, Porphyromonas, Campylobacter and Enterococcus predominated in the community generated by V4-V6 primers, and the most numerous genera in the V7-V9 community were Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and Selenomonas. Targeting the V4-V6 region failed to detect the genus Fusobacterium, while the taxa Selenomonas, TM7 and Mycoplasma were not detected by the V7-V9 primer pairs. The communities generated by degenerate and non-degenerate primers did not demonstrate significant differences. Averaging the community fingerprints generated by V1-V3 and V7-V9 primers provided results similar to Sanger sequencing, while allowing a significantly greater depth of coverage than is possible with Sanger sequencing. It is therefore important to use primers targeted to these two regions of the 16S rRNA gene in all deep-sequencing efforts to obtain representational characterization of complex microbial communities.  相似文献   
34.
35.
The vitamin D receptor (VDR) is expressed in numerous cells and tissues, including the skin. The critical requirement for cutaneous expression of the VDR has been proven by investigations in mice and humans lacking functional receptors. These studies demonstrate that absence of the VDR leads to the development of alopecia. The hair follicle is formed by reciprocal interactions between an epidermal placode, which gives rise to the hair follicle keratinocytes and the underlying mesoderm which gives rise to the dermal papilla. Hair follicle morphogenesis ends the second week of life in mice. Studies in VDR null mice have failed to demonstrate a cutaneous abnormality during this period of hair follicle morphogenesis. However, VDR null mice are unable to initiate a new hair cycle after the period of morphogenesis is complete, therefore, do not grow new hair. Investigations in transgenic mice have demonstrated that restricted expression of the VDR to keratinocytes is capable of preventing alopecia in the VDR null mice, thus demonstrating that the epidermal component of the hair follicle requires VDR expression to maintain normal hair follicle homeostasis. Studies were then performed to determine which regions of the VDR were required for these actions. Investigations in mice lacking the first zinc finger of the VDR have demonstrated that they express a truncated receptor containing an intact ligand binding and AF2 domain. These mice are a phenocopy of mice lacking the VDR, thus demonstrate the critical requirement of the DNA binding domain for hair follicle homeostasis. Transgenic mice expressing VDRs with mutations in either the ligand-binding domain or the AF2 domain were generated. These investigations demonstrated that mutant VDRs incapable of ligand-dependent transactivation were able to prevent alopecia. Investigations are currently underway to define the mechanism by which the unliganded VDR maintains hair follicle homeostasis.  相似文献   
36.
Wasps of the genus Nasonia are important biological control agents of house flies and related filth flies, which are major vectors of human pathogens. Species of Nasonia (Hymenoptera: Pteromalidae) are not easily differentiated from one another by morphological characters, and molecular markers for their reliable identification have been missing so far. Here, we report eight single-nucleotide polymorphism and three sequence-tagged site markers derived from expressed sequenced tag libraries for the two closely related and regionally sympatric species N. giraulti and N. vitripennis. We studied variation of these markers in natural populations of the two species, and we mapped them in the Nasonia genome. The markers are species-diagnostic and evenly spread over all five chromosomes. They are ideal for rapid species identification and hybrid recognition, and they can be used to map economically relevant quantitative trait loci in the Nasonia genome.  相似文献   
37.

Background and Aims

Understanding the interplay between genetic susceptibility, the microbiome, the environment and the immune system in Crohn’s Disease (CD) is essential for developing optimal therapeutic strategies. We sought to examine the dynamics of the relationship between inflammation, the ileal microbiome, and host genetics in murine models of ileitis.

Methods

We induced ileal inflammation of graded severity in C57BL6 mice by gavage with Toxoplasma gondii, Giardia muris, low dose indomethacin (LDI;0.1 mg/mouse), or high dose indomethacin (HDI;1 mg/mouse). The composition and spatial distribution of the mucosal microbiome was evaluated by 16S rDNA pyrosequencing and fluorescence in situ hybridization. Mucosal E. coli were enumerated by quantitative PCR, and characterized by phylogroup, genotype and pathotype.

Results

Moderate to severe ileitis induced by T. gondii (day 8) and HDI caused a consistent shift from >95% Gram + Firmicutes to >95% Gram - Proteobacteria. This was accompanied by reduced microbial diversity and mucosal invasion by adherent and invasive E. coli, mirroring the dysbiosis of ileal CD. In contrast, dysbiosis and bacterial invasion did not develop in mice with mild ileitis induced by Giardia muris. Superimposition of genetic susceptibility and T. Gondii infection revealed greatest dysbiosis and bacterial invasion in the CD-susceptible genotype, NOD2−/−, and reduced dysbiosis in ileitis-resistant CCR2−/− mice. Abrogating inflammation with the CD therapeutic anti-TNF-α-mAb tempered dysbiosis and bacterial invasion.

Conclusions

Acute ileitis induces dysbiosis and proliferation of mucosally invasive E. coli, irrespective of trigger and genotype. The identification of CCR2 as a target for therapeutic intervention, and discovery that host genotype and therapeutic blockade of inflammation impact the threshold and extent of ileal dysbiosis are of high relevance to developing effective therapies for CD.  相似文献   
38.
The potato psyllid (Bactericera cockerelli, Sulc) is an invasive pest of solenaceous plants including potatoes (Solanum tuberosum L.)and tomatoes (Solanum lycopersicum L.). The insect transmits the phytopathogen Candidatus Liberibacter solanacearum, which has been identified as the causal agent of Zebra Chip in potatoes. The microbiome of the potato psyllid provides knowledge of the insect's bacterial makeup which enables researchers to develop targeted biological control strategies. In this study, the microbes associated with four B. cockerelli life stages were evaluated by 16S bTEFAP pyrosequencing. The sequences were compared with a 16S-rDNA database derived from NCBI's GenBank. Some bacteria identified are initial discoveries. Species of Wolbachia, Rhizobium, Gordonia, Mycobacterium, Xanthomonas and others were also detected and an assessment of the microbiome associated with B. cockerelli was established.  相似文献   
39.
Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems.  相似文献   
40.
New dithiane or dithiolane derivatives of gossypol and gossypolone were synthesized with dithiolethane or dithiolpropane in the presence of BF(3)/Et(2)O. These thioderivatives exhibited low toxicity on KB cells (human epidermoid carcinoma cells of the mouth). They react easily with electrophiles in aprotic solvents to regenerate gossypolone or to form dehydrogossypoldithianes and dehydrogossypoldithiolanes, which display higher toxicity on KB cells. In addition, the low toxicity of gossypol thioderivatives was reversed by nitric oxide donors in physiological media. These experiments suggest that gossypol and gossypolone dithianes and dithiolanes can be used as prodrugs that target tumor cells surrounded by high concentrations of nitric oxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号